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A BST R AC T   

 

Aim: To evaluate the distribution and frequency of microhemorrhages (MHs) in cerebral small vessel 

disease (CSVD), multiple lacunar stroke and control groups and their association with factors 

implicated in etiology such as hypertension (HT), diabetes mellitus (DM) and antiplatelet drug use. 

Methods: Patients were divided into CSVD, multiple lacunar infarction (MLI) and control groups 

based on white matter hyperintensity (WMH), presence of lacunes, and patient clinical information. 

The presence and frequency of MHs were compared in terms of comorbidities such as accompanying 

HT, DM and antiplatelet use. 

Results: The presence of MHs in the CSVD group was significantly higher than in the other groups 

(p<0.001). The number of MHs in the thalamus, basal ganglia and cortical-subcortical areas were 

significantly higher in the CSVD group than in the other groups. 

Conclusions: One of the most important points that stands out in this study is that microhemorrhage 

was seen in 78% in the CSVD group, 38% in the MLI group and 20% in the control group, although 

the total number did not exceed three. The results of our study suggest that T2* gradient echo (GE) 

and susceptibility weighted (SW) imaging should be performed before thrombolytic therapy in stroke 

patients with or without CSVD. 
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Cerebral small vessel disease (CSVD) is the 

involvement of cerebral small arteries, arterioles, 

capillaries and veins by various mechanisms and 

pathologies [1]. Among the imaging modalities, 

magnetic resonance imaging (MRI) provides the 

best visualization of the findings of CSVD. It is 

possible to detect CSVD through secondary 

changes in imaging modalities such as new small 

subcortical infarcts, lacunar infarcts, white 

matter hyperintensity (WMH), enlarged 

perivascular space and the presence of 

microhemorrhages (MH) [2]. Clinically, 

ischemic outcomes are mostly expected when it 

comes to CSVD, and it should be kept in mind 

that the clinical outcome may be micro or 

macrohemorrhages depending on the 

pathogenesis of the underlying CSVD [1, 2]. It 

has been reported that the acute and short-term 

prognosis of strokes in CSVD is better compared 

to other strokes [3]. However, the long-term 
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results are not better in terms of mortality and 

loss of function [4]. Thrombolytic therapy with 

tissue plasminogen activators (tPA) is an 

accepted treatment modality in stroke patients [5] 

but increases the risk of symptomatic 

intracerebral hemorrhage in patients with 

leukoaraiosis [6]. 

Microbleeds or microhemorrhages, can be 

visualized as hypointense foci on T2*-weighted 

gradient echo (GE) and susceptibility-weighted 

(SW) images [7]. The diameter of the MHs is 

usually between 2-5 mm, sometimes reaching up 

to 10 mm [2]. Localization of MHs may be 

informative about the underlying etiological 

cause. Parietal lobe localized MHs with cortical-

subcortical localization are associated with 

apolipoprotein E-4 (ApoE4) carriage [8]; MHs 

with cortical-subcortical localization are more 

commonly associated with cerebral amyloid 

angiopathy, while MHs located in deep cerebral 

areas are associated with hypertension or 

atherosclerotic microangiopathy. Hypertension 

may also cause mixed involvement in deep and 

subcortical areas [9]. The frequency of MHs 

increases with age and ApoE4 carriage [10]. 

MHs have also been associated with antiplatelet 

drug use [11]. 

There is an increased risk of stroke in the 

presence of MHs [8]. Significant problems arise 

in the use of antiaggregants, anticoagulants and 

recombinant tissue plasminogen activator (tPA) 

in the treatment of acute ischemic stroke [12]. In 

patients with anticoagulant use, the risk of 

intracranial hemorrhage increases 5.5-fold in the 

presence of 5 or more cerebral MHs [13]. 

In addition to CSVD, the risk of multiple lacunar 

infarction is increased in the presence of 

hypertension (HT) or diabetes mellitus (DM) 

[14]. The risk of arteriolosclerosis, which is the 

etiology of small vessel disease, increases with 

HT, DM and age [1]. The aim of our study was 

to evaluate the distribution-frequency of MHs in 

CSVD, multiple lacunar infarction (MLI) and 

control groups and their association with 

etiologic factors such as hypertension (HT), 

diabetes mellitus (DM) and antiplatelet (AP) use. 

 

  

 

In this study, we retrospectively reviewed 600 

brain MRI scans performed between February 

2018 and February 2020 in patients aged ≥50 

years. Ethics committee approval 2023/289 was 

obtained from the ethics committee of Local 

Instution. Patients with primary-metastatic brain 

tumors, history of head and neck region cranial 

radiotherapy, parenchymal macrohemorrhage 

and large areas of sequelae encephalomalacia, 

history of head trauma, and motion artifact in 

T2*-weighted gradient echo sequence were 

excluded from the study. A total of 184 patients 

were included in the study. Patients were 

evaluated for the presence of WMH, enlarged 

perivascular distance and MH, which are the 

MRI findings of CSVD. These patients were 

divided into groups based on WMH, presence of 

lacunes, and patient clinical information. Patients 

with diffuse WMH and variable number of 

lacunar infarcts were defined as the CSVD 

group, patients with multiple lacunar infarcts and 

mild to moderate WMH were defined as the MLI 

group, and patients with 1 or 2 lacunar infarcts 

without a history of stroke who were imaged for 

reasons such as headache and vertigo were 

defined as the control group.  

The presence, localization and number of 

MHs were evaluated in these groups. 

Cerebellum, brainstem, thalamus, basal ganglia 

were classified as deep; MHs located in the 

cortical-subcortical area, white matter were 

classified as superficial and those in both areas 

were classified as deep&superficial [9] (Figure 

1a, 1b, 1c). The difference in the distribution of 

MHs between the groups and their association 

Materials and methods 
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with the factors implicated in the etiology were 

evaluated.  

MHs, lacunar infarcts, and the consensus 

proposed by Wardlaw et al. [2] according to the 

grouping of enlarged PVSs by Kwee et al. [15]. 

Those with diffusely enlarged PVS at the level of 

basal ganglia, especially in the corpus striatum, 

were evaluated as etat crible [16, 17].  

Lacunar infarcts are 3-15 mm in diameter, 

oval or round shaped cavities with a central fluid 

signal on fluid-attenuated inversion recovery 

(FLAIR) sequence and a hyperintense rim at the 

periphery, similar to CSF [2], (Figure 1d). 

Enlarged perivascular spaces, another imaging 

finding in CSVD, are seen in all pulse sequences 

in the same way as cerebrospinal fluid (CSF). 

Those in the sublenticular area adjacent to the 

lenticulostriate arteries were classified as type 1, 

those around the medullary perforating arteries 

extending from the cortex to the white matter at 

the convexity level were classified as type 2, and 

those around the collicular-accessory collicular 

arteries in the lower midbrain at the 

pontomesencephalic junction were classified as 

type 3 [15].   

The Fazekas scale finds extensive application 

in both clinical practice and research for visually 

grading white matter hyperintensities (WMH) in 

magnetic resonance imaging (MRI) data [18]. 

WMHs are rated as Fazekas 1, 2 and 3 according 

to the Fazekas classification [19].  

 

 

 

 

 

 

 

 

 

 

 

The presence of HT, DM and history of 

antiplatelet use were evaluated in all patient 

groups. 

Statistical analysis: Statistical analyses were 

performed with SPSS software (SPSS 22 for 

Mac, IBM Co., Chicago, IL, USA). The 

normality of distribution of the data was 

evaluated by Shapiro-Wilk test. Kruskal-Wallis 

test was used to compare distribution of 

numerical non-parametric variables. Rows by 

column Pearson Chi-square test and Fisher 

Freeman Halton test were used to analyze 

categorical data. A p-value less than 0.05 is 

considered statistically significant.  

 

 

 

In this study, 64 patients (22 females, 42 

males) were included in the CSVD group, 55 

patients (26 females, 29 males) in the MLI group 

and 61 patients (33 females, 28 males) in the 

control group. There was no statistical difference 

between the groups in terms of gender (p=0.08). 

The median (min-max) age values of the groups 

were 76 (54-85), 74 (57-86) and 70 (52-87) in 

CSVD, MLI and control groups, respectively, 

with no statistical difference between the groups 

(p=0.1). There was no statistical difference 

between the groups in terms of the presence of 

HT and DM and antiplatelet use (p=0.05-0.74-

0.08, respectively) (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

Results 

Table 1. Demographic data and number-percentages of risk group diseases in cerebral small vessel disease 

(CSVD), multiple lacunar infarction (MLI) and control groups. 

Parameters CSVD (n=64) MLI (n=55) Control group (n=61) p-value 

Age (Median) (Min-Max) 76 (54-85) 74 (57-86) 70 (52-87) 0.1a 

Gender (Female/Male) 22/42 26/29 33/28 0.08b 

Hypertension 47 (%73) 39 (%71) 33 (%54) 0.05b 

Diabetes Mellitus 20 (%31) 19 (%35) 17 (%28) 0.74b 

Antiplatelet drug use 34 (%53) 35 (%64) 26 (%43) 0.77b 

a: Kruskal Wallis Test, b: R by C Pearson Chi-square test. 
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Table 2. Presence and distribution of microhemorrhages in cerebral small vessel disease (CSVD), multiple 

lacunar infarction (MLI) and control groups. 

Parameters CSVD (n=64) MLI (n=55) Control group (n=61) p-value 

Presence of microhemorrhages 50 (%78) 21 (%38) 12 (%20) <0.001a 

Deep settlement 13 (%20) 5 (%9) 3 (%5)  

<0.001b 

 Superficial settlement 7 (%11) 3 (%6) 6 (%10) 

Deep+superficial settlement 30 (%47) 13 (%24) 3 (%5) 

Non-microhemorrhage 14 (%22) 34 (%62) 49 (%80) 

a :Fisher Freeman Halton test   b: R by C Pearson Chi-square. 

 

Figure 1. Superficial, deep, deep&superficial microbleeds were observed as hypointense foci on axial 

T2* gradient eco images ( a, b,c, respectively), d: In the axial FLAIR image, lacunar infarcts are seen 

in the bilateral lentiform nuclei with hypointense central and hyperintense rim on the periphery are 

observed.  
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There was a statistically significant difference 

between the groups in the evaluation of the 

presence of microbleeding. Especially this rate 

was significantly higher in the CSVD group 

(p<0.001). Deep and deep&superficial MHs are 

significantly more common in CSVD compared 

to other groups (p<0.001) (Table 2) (Figure 1a, 

1b, 1c). There was a statistically significant 

difference between the groups in the cerebellum 

in the evaluation of the number of 

microhemorrhages, especially in the CSVD 

group, more microhemorrhages were observed 

than in the control group similar to MLI 

(p=0.002). There was no statistically significant 

difference between the groups in the evaluation 

of microhemorrhages in the brain stem and white 

matter, respectively (p=0.44, p=0.07).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the evaluation of microhemorrhages, they 

were observed in the thalamus, basal ganglia and 

cortical-subcortical localization, more in the 

CSVD group and there was a statistically 

significant difference between the groups 

(p<0.001, p=0.002, p=0.04 respectively) (Table 

3). 

When perivascular spaces were analyzed, it 

was observed that the type 1 perivascular space 

was significantly higher in the CSVD group 

compared to the other groups (p<0.001).   

 

 

 

In this study, the presence of MHs in all areas 

and the number in the thalamus, basal ganglia 

and cortical-subcortical    areas were significantly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

Table 3. Number of microhemorrhages by localization in cerebral small vessel disease (CSVD), 

multiple lacunar infarction (MLI) and control groups.     

Number of microhemorrhages 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 p-value 

Cerebellum 

CSVD 42 14 6 1 0 1             

0.002* 
MLI 47 7 1 0 0 0            

Control group 59 2 0 0 0 0            

Brain stem 

CSVD 53 5 2 0 1 1 1 1           

0.44* 
MLI 48 3 2 1 0 1 0 0          

Control group 60 1 0 0 0 0 0 0          

Thalamus 

CSVD 31 7 6 3 6 2 4 1 1 0 0 0 0 3     

<0.001* 
MLI 41 5 4 1 1 2 0 0 0 0 0 0 1 0    

Control group 59 2 0 0 0 0 0 0 0 0 0 0 0 0    

Basal ganglia 

CSVD 37 5 7 4 7 1 1 1 0 0 0 0 1 0     

0.002* 
MLI 41 8 3 1 1 0 1 0 0 0 0 0 0 0    

Control group 59 1 1 0 0 0 0 0 0 0 0 0 0 0    

White matter 

CSVD 52 9 2 1               

0.07* 
MLI 52 3 0 0              

Control group 59 2 0 0              

Cortical-subcortical 

CSVD 30 11 7 3 1 2 1 0 4 1     1 0 3  

0.04* 
MLI 39 7 3 1 1 1 0 1 0 0     0 1 1 

Control group 55 5 1 0 0 0 0 0 0 0     0 0 0 

* Fisher Freeman Halton test were used to analyze categorical data. 
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higher in the CSVD group than in the MLI and 

control groups. The presence and number of 

MHs were significantly higher in the CSVD 

group compared to the MLI and control groups. 

There was no significant difference between the 

groups in terms of HT, DM and antiplatelet use 

which may be involved in the etiology of MHs. 

However, the presence and number of deep-

seated, deep&superficial localized MHs were 

significantly higher in the CSVD group as seen 

in HT [9].  

In the literature, there are publications 

indicating that the number and deep-superficial 

occurrence of MHs may be helpful in predicting 

the severity and risks of the underlying 

predominant pathology [20]. Although the blood 

pressure regulation status of our patients is not 

known, this suggests that blood pressure control 

is actually more important than HT history in the 

development of CSVD. This is supported by 

publications showing that blood pressure 

regulation is important in terms of the 

development of microbleeds and intracerebral 

hemorrhage [21].  

One of the most important points that stands 

out in this study is that microhemorrhage was 

seen in 78% in the CSVD group, 38% in the MLI 

group and 20% in the control group, although the 

total number did not exceed three. T2* GE and 

SW imaging should be performed before 

thrombolytic therapy in stroke patients with or 

without CSVD. There are studies supporting this 

in the literature [22]. In the presence of deep-

seated MHs, HT control is an important factor in 

the development of spontaneous intracranial 

hemorrhage.  

In the literature, there are publications 

showing a direct correlation between CSVD and 

the risk of ischemic stroke or spontaneous 

intracranial hemorrhage, and this has also been 

shown to be directly related to prognosis [23]. A 

postmortem histopathologic study has also 

shown an association between MHs and 

spontaneous intracranial hemorrhage [24]. 

Bleeding risk associated with leukoaraiosis and 

lacunar infarcts in stroke treatment may also be 

secondary to microbleeds [6, 25]. Leukoaraiosis 

is a term mostly used in computed tomography 

(CT) and CT was used in these studies, and since 

MHs were not detected, the bleeding risk may 

have been associated with lacunar infarction and 

leukoariosis, which are findings of CSVD. 

There are also publications in the literature 

showing an increased risk of cerebral 

hemorrhage or hemorrhagic transformation after 

thrombolytic therapy in patients with old 

microbleeds, and therefore, detection of 

microbleeds becomes important [22, 26, 27]. 

However, there are studies showing that the risk 

of intracranial hemorrhage is less than the 

probability of exceeding the benefits of 

thrombolytic therapy, and it is recommended to 

make a patient-based decision based on the 

benefit-risk ratio [28]. In stroke patients, if MRI 

cannot be performed due to reasons such as the 

importance of time, the protocol of the stroke 

center, etc., the patient's recent brain MRI 

examinations, if any, should also be evaluated for 

the presence of old microbleeds. 

Microhemorrhages can be confused with 

calcification, normal vascular structures on cross 

section, iron deposits due to other causes and 

hemorrhagic micrometastases such as malignant 

melanoma, diffuse axonal injury due to head 

trauma [2]. Microhemorrhages are also 

radiologically indistinguishable from 

microdissections, microaneurysms, 

microcalcifications and arteriolar 

pseudocalcifications [7]. One of the limitations 

of this study is that it was performed with 2D T2* 

GE sequence. This may lead an increase in false 

positive cases. Pre-post mortem radiology-

histopathology concordance studies found that at 

least half of MHs could not be demonstrated by 
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imaging methods [7, 20]. The best agreement 

between radiology and histopathology is with 7 

T MRI devices, but these devices are not yet used 

in daily routine practice [7, 29]. Demonstration 

of MHs is enhanced by magnetic field strength, 

3D sequences and postprocessing and can be 

differentiated from calcifications with phase 

images [7].  
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