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A B ST R AC T  
 

Aim: A successful gene therapy requires a delivery system for overcoming various biological barriers. For 
this, we adapted the factorial design and response surface methodology to the cationic solid lipid nanoparticle 
production process. 
Methods: Screening and optimization of formulations were carried out with factorial design with 3 factors and 
3 levels using Box-Behnken Design. Then, solid lipid nanoparticles were physicochemically characterized. 
Furthermore, optimal SLN formulation is examined in terms of complex formation with plasmid DNA, its 
protection potential against nucleases, cytotoxicity profile, and storage stability.  
Results: Response-surface analyses demonstrated that the selected quadratic model holds significance for 
particle size and zeta potential. The interaction of independent variables was statistically determined. 

Optimization and prediction were performed using obtained second-order polynomial equations. Optimal 
formulation and complexes were found to be nanosized, positively charged and their polydispersity-index 

values below 0.3 as an indicator of being monodispersed.  Cytotoxicity of the optimal formulation is 
compatible for further studies and no significant increase was observed in particle size until day 21 and until 
day 60 for polydispersity-index.  
Conclusion: Optimal formulation provides a good basis as a gene delivery system was produced with 
developed systematic. Briefly, this methodology could be used to obtain SLNs with desired conditions.  

 
Keywords: Solid lipid nanoparticle, factorial design, response surface method, gene delivery. 

                                                                                                                               

     Hasan Akbaba,  

Department of Pharmaceutical Biotechnology, Faculty 

of Pharmacy, Ege University, İzmir, Turkey 

E-mail: hasan.akbaba@ege.edu.tr           

Received: 2020-08-31 / Revised: 2020-09-23 

Accepted: 2020-09-26 / Published online: 2021-01-01 

 

Introduction 

According to the U.S.  Food and Drug 

Administration (FDA), gene therapy purpose to 
change or control the expression of a gene or to 

make adjustments to the biological features of 

living cells for therapeutic use [1]. 

Successful gene therapy requires a gene 

delivery system for overcoming various 

biological barriers and the effects of the 

environment. The gene delivery system must 

protect the genetic material from lysosomal 

degradation when taken into cell cytoplasm 

with endocytosis and then be able to transcend 

the nuclear membrane as a biological barrier. 

Genetic material also should be protected 

against harsh environmental conditions such as 

pH and temperature change, redox reactions [2–

5]. 
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Various gene transfer techniques are applied. 
They are divided into viral and non-viral 

techniques.  As viral techniques; adenoviruses, 

adeno-associated viruses, lentiviruses, and 
retroviruses are often used for gene delivery. 

Non-viral techniques contain; inorganic 

particles (calcium phosphate, silica, gold, 

magnetic), synthetic or natural biodegradable 
particles (polymeric, cationic lipid, peptide-

based vectors) and physical methods (needle 

injection, ballistic DNA injection, 

electroporation, sonoporation, photoporation, 
magnetofection, hydroporation) [6–8]. 

Although viral techniques are mostly used in 

clinical trials, some of their difficulties caused 
alternative techniques to be considered.  These 

difficulties are biosafety problems (high 

immunogenicity and potential insertional 

mutagenesis) and limited gene package 
capacity [9–11]. 

One of the non-viral methods, solid lipid 

nanoparticles (SLN); are non-toxic carrier 

systems stabilized by surfactants and made 
from solid lipids for controlled and targeted 

delivery. Their advantageous features are, 

biocompatibility, assembling of hydrophilic 
and hydrophobic drugs, maintain the release of 

the drug and avoid photochemical, chemical, or 

oxidative degradation [12]. These systems have 

several advantages such as improved 
transfection, reduced immunogenicity, large 

gene package size, ease of manufacture, 

protection from degradation, prolong 
circulation of the nanoparticles (NPs), reduce 

side effects,  realize controlled release of the 

contents, and enhanced targeted delivery  [13]. 

SLNs are preferred as gene delivery systems 
due to their large surface areas, small 

dimensions, ability to transfect genetic 

material, biocompatibility, and suitability for 
large-scale production [9,14]. SLNs could be 

produced by various methods; high shear 

homogenization and ultrasound, high-pressure 
homogenization (hot and cold), solvent 

emulsification/evaporation, microemulsion 

based SLN preparations [15–19]. 
For the production of SLNs, the selection of 

components, their proportions, and the 

differences depending on the preparation 

method lead to the presence of a wide 
alternative sample space. Therefore, a method 

that allows a systematic analysis should be 

applied prior to experimental investigation. In a 

factorial design, the appropriate number of 
samples for various factors and levels are 

determined for the analysis of independent 

variables and dependent variables. The main 
goal is to achieve the highest level of output 

with the least number of data in order to reduce 

the labor force and cost while increasing 

efficiency. Box-Behnken designs are used to 
generate higher-order response surfaces using 

fewer required runs with factorial design 

technique.   Box-Behnken design can also 

perform statistical analysis of the model, 
response optimization, and prediction of the 

formulations that meet the desired conditions 

[20,21]. In this study, we used a factorial design 
for scanning microemulsion components and 

optimizing SLN formulation. We examined the 

Design of Experiments (DOE), which we 

propose to be used in the development of 
formulations that are potential as gene delivery 

systems using Response Surface Methodology 

(RSM).  Moreover, we characterized the 
complex formed by the optimal SLN 

formulation with plasmid DNA and examined 

it in terms of its protection potential against 

nucleases, cytotoxicity profile, and storage 
stability.   

 

Materials and Methods 
This study has been projected by the Scientific 

and Technological Research Council of Turkey 
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(TÜBİTAK) under code TÜBİTAK-SBAG-
218S682. EGFP encoding plasmid pcDNA3-

EGFP was a gift from Doug Golenbock 

(Addgene plasmid # 13031; 
http://n2t.net/addgene:13031; RRID: 

Addgene_13031). Behenoyl polyoxyl-8 

glycérides (Compritol® HD5 ATO) (C-HD5) 

was kindly donated by Gattefosse, France. 
Macrogolglycerol ricinoleate (Kolliphor® 

ELP) (K-ELP) was kindly donated by BASF, 

Germany. Mouse fibroblast cell line (L929) 

was purchased from ATCC, USA. Ethanol 
(EtOH), Sodium dodecyl sulfate (SDS) were 

provided from Merck-Co., Germany. 

Dimethyldioctadecylammonium bromide 
(DDAB) was purchased from Sigma-Aldrich 

Co., USA. Alamar Blue cell viability assay kit 

was purchased from Thermo Fisher Scientific, 

USA. All other chemicals were of analytical 
grade and used as received. Ultrapure water was 

used in all stages needed.  

Nanoparticle preparation 
Cationic SLNs were produced with slight 
modifications to the previously described melt-

emulsification technique [22,23]. As 

formulation components, C-HD5 and DDAB 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

were used as lipid phase; K-ELP was used 
surfactant (S); EtOH was used as co-surfactant 

(CoS), and UPH2O was used as an aqueous 

phase. In the first step of production, 
microemulsion contents were weighed in a 

sealed cap glass vial as determined by factorial 

design based on preliminary laboratory studies. 

Then, the vial and its content were kept in a 
water bath at 10 degrees above the lipid melting 

point (75°C) until transparent microemulsion 

was self-established. Obtained oil in water 

(o/w) microemulsion was dispersed in cold 
ultra-pure distilled water (0-4 °C) at a ratio of 

1:10 (w/v) under vigorous stirring. SLNs were 

obtained by sudden freezing of microemulsion 
droplets in cold water. 

 

Experimental design 
Screening and optimization of SLN 
formulations were carried out with factorial 

design with 3 factors and 3 levels. The amount 

of lipid (3%, 4%, and 5%) and the total amount 

of surfactant and co-surfactant (18%, 24%, and 
30%) were selected as two variables. These 

variables are important since they form two 

main   corners   of   the   pseudo-ternary   phase 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Table 1. Variables and their levels in Box-Behnken Design. 

Variables Level of variables 

Independent variables Low Level (-1) Mid-Level (0) High Level (1) 

A Lipid (%) 3% 4 % 5% 

B Surfactant + Co-Surfactant (1:2, w/w) (%)  18 % 24% 30% 

C Lipid to cationic lipid ratio (w/w) 2:1 1:1 1:2 

Dependent variables Goals 

Y1 Particle Size (nm) Minimize 

Y2 Polydispersity Index Minimize 

Y3 Zeta Potential (mV) Target 35 mV 
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diagram, which is commonly used in the 

production of the microemulsion [24,25]. The 

presence and amount of cationic lipids, which 

are essential for cationic SLN production, were 
aimed to be investigated as a third variable. For 

this, the lipid to cationic lipid ratio (2:1, 1:1, 

1:2, w/w) was determined as the third variable. 
Dependent on the preliminary studies and 

according to the literature, the factorial design 

matrix was created using the Minitab 19 

software (Minitab LLC, USA) using the 
variables represented in Table 1. Totally 15 

different compositions were determined as 12 

alternative microemulsion contents and 3 
midpoint replicates. Dynamic light scattering 

(DLS)    analysis   is    widely    used   for    the  

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
characterization of SLNs. Particle size, PDI, 

and zeta potential measurements obtained by 

DLS analysis were selected as dependent 

variables. Response optimization was 
determined to aim the smallest particle size and 

the most homogeneous particle size distribution 

in the manner of the lowest PDI value. Zeta 
potential was set as a target response value and 

determined as 35 mV.  The designed variables 

with codes and actual responses in terms of 

DLS measurement results are given in Table 2. 
In order to provide screening in the sample 

space and according to the analysis of variance 

(ANOVA), the quadratic model was chosen for 
a Box-Behnken design. With the RSM analysis, 

P-Value, F-Value, coefficient determinant (R2), 

Table 2. Designed formulation parameters and measured responses using Box-Behnken Desing for 
SLN production. 

No Formulation Code A B C Y1 Y2 Y3 

Lipid  
(%) 

S + CoS  
(%)  

L/Cat.L  
(w/w) 

Particle Size 
(nm) ±S.D. 

PDI ± S.D. Zeta Potential 
(mV) ±S.D. 

1 C-HD5-SLN 1 3 24 2: 1 3155  ±116 0.756 ±0.060 33.8 ±7.87 

2 C-HD5-SLN 2 3 24 1: 2 200.4 ±29.37 0.341 ±0.070 34.6 ±2.67 

3 C-HD5-SLN 3 5 24 2: 1 3513 ±117.1 0.983 ±0.046 64.6 ±4.09 

4 C-HD5-SLN 4 5 24 1: 2 146.1 ±15.6 0.239 ±0.042 41.4 ±8.25 

5 C-HD5-SLN 5 4 18 2: 1 4024 ±470.2 0.858 ±0.202 59.8 ±0.96 

6 C-HD5-SLN 6 4 18 1: 2 65.31 ±2.578 0.628 ±0.038 40.0 ±3.12 

7 C-HD5-SLN 7 4 30 2: 1 690.2 ±172.4 0.740 ±0.150 35.3 ±14.4 

8 C-HD5-SLN 8 4 30 1: 2 45.86 ±16.63 0.468 ±0.224 40.6 ±3.96 

9 C-HD5-SLN 9 3 18 1: 1 514.3 ±62.17 0.531 ±0.082 61.5 ±2.40 

10 C-HD5-SLN 10 5 18 1: 1 708.4 ±118.2 0.561 ±0.108 60.8 ±1.68 

11 C-HD5-SLN 11 3 30 1: 1 592.7 ±92.47 0.596 ±0.076 36.3 ±2,85 

12 C-HD5-SLN 12 5 30 1: 1 222.1 ±11.95 0.459 ±0.122 39.9 ±3.13 

13 C-HD5-SLN 13 4 24 1: 1 399.3 ±19.44 0.516 ±0.291 34.9 ±2.73 

14 C-HD5-SLN 14 4 24 1: 1 353.1 ±62.41 0.573 ±0.081 33.5 ±3.48 

15 C-HD5-SLN 15 4 24 1: 1 424.5 ±152.4 0.573 ±0.006 32.8 ±1.66 
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and adjusted coefficient determinant (R2 adj) 
data were evaluated statistically. Actual data of 

the formulation determined by response 

optimization were measured and the 
statistically produced predicted values were 

calculated. The fit of the model and second-

order polynomial equations were determined. 

Then, the 3D-surface and contour plots were 
analyzed. 

 

Agarose gel retardation assay, SDS-induced 
release, and DNase I protection studies 
Agarose gel retardation assay was performed to 

determine the optimal complex formation ratio 

of C-HD5-SLN and pcDNA3-EGFP.  
Complexes with various ratios were formed by 

mixing the constant amount of pcDNA3-EGFP 

(100 ng/µL) with the increasing amount of C-

HD5-SLN under gentle shaking for 30 min at 
room temperature, which allows the formation 

of electrostatic interactions between the 

positive charges of SLNs and the negative 

charges of pcDNA3-EGFP. The resultant 
complexes were characterized by agarose gel 

retardation assay [26–28]. 

In order to show the release of pcDNA3-EGFP, 
SDS induced release study was performed. To 

evaluate the capacity of the C-HD5-SLN to 

protect pcDNA3-EGFP,  complexes were 

incubated with DNase I (0.4 IU DNase I/1 µg 
pDNA) at 37°C for 30 minutes, then 

decomplexed in presence of SDS 1% (w/v) and 

further subjected agarose gel retardation assay 
[29]. The bands were observed by a UV 

transilluminator with a digital imaging system 

(Vilber Lourmat, France).  

 

Physicochemical characterization for freshly 

prepared SLNs and stability studies  
The particle size, polydispersity index, and zeta 
potential values of C-HD5-SLN and C-HD5-

SLN:pcDNA3-EGFP complex were measured 

by DLS (Zeta sizer Nano ZS, Malvern 
Instruments Ltd., UK) method using non-

invasive backscattering mode with the detector 

positioned at 173°. DLS measurements were 
reported as averaged intensity weighted 

distribution for particle size measurements. The 

refractive index of the Compritol (1.456) as a 

main ingredient of the lipid matrix was used for 
DLS calculations [30]. The triplicate 

measurements were performed using 

disposable polystyrene microcuvettes.  

The morphology of C-HD5-SLN and C-HD5-
SLN:pcDNA3-EGFP complex were visualized 

by using Scanning Electron Microscope (SEM, 

Carl Zeiss 300VP, Germany).  Sample 
preparation was done by drying the 

nanoparticles on metal plates and then coating 

with 100 A° thick gold in the brand coating 

device (Quorum Q150 Res, UK). 
The physicochemical stability of the 

formulation was followed up to 2 months. SLNs 

were stored at 4 °C and measured at days 0, 7, 

14, 30, and 60 to evaluate the stability. 
 

Cytotoxicity analysis 
The in vitro cytotoxicity profile of the C-HD5-
SLN and C-HD5-SLN:pcDNA3-EGFP 

complex was evaluated on the fibroblast cell 

line (L929). One day before the experiment, 

L929 cells were plated in 96-well plates at a 
density of 5 × 103 cells per well in 100 μL. After 

overnight incubation, cells were treated with C-

HD5-SLN and C-HD5-SLN:pcDNA3-EGFP 
complex at increasing formulation volumes (3, 

6, 9, 12, 15 µL/well), with respect to SLN 

volume for 24 h. The percentage of living cells 

was investigated by the Alamar Blue 
proliferation kit (Thermo Fisher Scientific, 

USA) according to the kit’s manual. 

Statistical analysis 
Except for the experimental design and RSM, 

the data analysis was performed with Prism 6 
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(GraphPad Software, Inc., USA) software. The 
statistical analysis between different groups has 

been assessed by a non-paired t-test and Two-

way ANOVA followed by multiple comparison 
tests. Differences were considered statistically 

significant if the P value was less than 0.05. The 

results of all experiments were reported as 

mean ± S.D. 
 

Results and Discussion 
Microemulsion content is the main factor 

determining the physicochemical properties of 
SLNs obtained by the microemulsion dilution 

method. With this method, the first step in the 

production of SLN is to obtain clear transparent 
microemulsions. One of the most common 

methods to obtain clear microemulsions is to  

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
obtain pseudo-ternary phase diagrams and 

determine the microemulsion formation region 

on this diagram [24,25,31]. Then, SLNs are 

produced by selecting an initial microemulsion 
formulation based on the central point or 

several different points of this area. However, 

there can be an infinite number of alternative 
microemulsion formulation, regardless of the 

size of the area.  A reliable statistical evaluation 

is required to decide which point to choose. In 
order to make this statistical evaluation, 

dependent and independent variables and 

related responses should be determined. 
Particle size is the most widely used variable for 

SLN evaluation.  While encapsulation 

efficiency is an eligible parameter for SLNs 

loaded with drugs, the zeta potential value is an 
important parameter for cationic SLNs that will 

interact with nucleic acids via electrostatic 

forces on the surface.  

On the pseudo-ternary phase diagrams used in 
the conventional determination of the content 

ratios of the microemulsion, each corner has 

one of the main components of the formulation. 
In most cases, these are the lipid phase, the 

aqueous phase, and the total of surfactant and 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
co-surfactant amounts in percentages. Among 

these factors, the lipid phase and total of 

surfactant and co-surfactant were selected as 

formulation independent variables (Table 1). 
The aqueous phase was not chosen as a variable 

because determining the percentage of lipid and 

the percentage of total surfactant and co-
surfactant ensures that the percentage of water 

is also determined since the total of the system 

Table 3. The fit of the model and second order polynomial equations of the responses 
 
Response Regression analysis of variance Regression equation in coded units 

R2 R2 adj F-Value P-Value 

Particle 

Size 

94.19% 83.73% 376.83 0.003 Y1= 1824 - 4268 C - 2077 A + 303 C 

+ 1029 C*C + 332 A*A - 5.98 B*B 

- 103 C*A + 138.1 C*B - 23.5 A*B 

PDI 88.70% 68.37% 6.16 0.143 Y2= -0.39 + 0.251 C + 0.567 A - 0.0061 B 

+ 0.1015 C*C - 0.0377 A*A 

+ 0.00086 B*B - 0.0822 C*A 

- 0.00592 C*B - 0.01154 A*B 

Zeta 

Potential 
 

88.62% 78.14% 64.12 0.015 Y3 = 319.9 - 5.7 C - 61.5 A - 12.99 B 

+ 2.08 C*C + 7.78 A*A + 0.2252 B*B 
- 6.00 C*A + 1.046 C*B + 0.179 A*B 
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will be equal to one hundred percent. Therefore, 
the solid lipid/cationic lipid ratio in the lipid 

phase was chosen as the 3rd variable. The 

cationic lipid plays an important role in the 
charge of the formulation, hence its stability 

and its electrostatic interaction with negatively 

charged nucleic acids.  

With this information, as indicated in Table 1, 
lipid percentage, total surfactant and co-

surfactant percentage, and solid lipid cationic 

lipid ratio were determined as three 

independent variables. For the analysis of the 
response related to these variables, particle size, 

PDI, and zeta potential values were examined. 

Box-Behnken Design allows these variables to 
be evaluated with fewer samples. While it is 

necessary to test 33 = 27 different 

microemulsions in 3-factor 3-level factorial 

design, with Box-Behnken Design 
optimization, this factorial design can be 

completed with only 15 experiments with 3 

replicate center points. The contents of the 

microemulsion presented accordingly are given 
in Table 2 together with the response 

characterization values.  

Response surface regression analysis was 
performed using the values in Table 2. The 

second order polynomial equations and 

statistical evaluations obtained accordingly are 

summarized in Table 3. According to the RSM 
analysis, the F value for the particle size was 

determined as 376.83 (p = 0.003 <0.05). The F  

value demonstrated that the selected quadratic 
model holds significance [20,21].   

The coefficient determinant (R2) value was 

found 94.19% value indicates the reliability of 

the model together with adjusted R2 value. 
Overall, it can be predicted that particle size is 

affected by all variables.  The same interference 

is valid for zeta potential depending on the 
statistical data presented in Table 3.  However, 

PDI value does not fit the model while F value 

was found to be 6.16 and the P-value is 0.145 
>0.05. 

When we investigate the surface and contour 

plots of response surface regression analysis in 
terms of particle size, PDI, and zeta potential, 

we observed that the surface and contour plots 

lines are curved. If the model showed no 

interaction, the 3D surface plots would be 
planar [32,33]. Curved structures are the sign of 

interaction between variables. Likewise, in 

contour plots, this situation can be 

demonstrated by the presence of elliptical lines. 
These inclined plots are indicative of a second-

order polynomial equation for the model 

(Figure 1,2,3).  In the polynomial equation, the 
negative sign coefficient value indicates the 

antagonist effect and positive values indicate 

the agonist or synergist effect [20,34]. 

Regression Equation in Coded Units was given 
in Table 3.  For particle size, A, C * C, A * A, 

and C * B values have positive coefficient 

values while B, C, B * B, C * A, and A * B 

values have negative coefficient values. In 
terms of PDI, A, C, C*C, and B*B values have 

positive coefficient values while B, A*A, C*A, 

C*B, and A*B values have negative coefficient 
values. And for Zeta potential, C*C, A*A, B*B, 

C*B, and A*B values have positive coefficient 

values while A, B, C, and C*A values have 

negative coefficient values. 
RSM helps in the prediction of the theoretical 

optimum conditions for desired responses 

[20,21,32]. Mathematically offered formulation 
components were experimentally obtained.  

Optimal desired formulation component ratios 

and, predicted and actual experimental values 

were shown in Table 4. The obtained data 
successfully predicts the responses in parallel 

significance with P values. The particle size and 

zeta potential values of this formulation, coded 
as C-HD5-Opt-SLN, are very close to the 

predicted value. The PDI value was relatively  
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Figure 1. 3D surface response plots and contour plots showing the interference of the variables on 
particle size. 

 

 
Figure 2. 3D surface response plots and contour plots showing the interference of the variables on 
PDI. 

 



                                              Akbaba et al / Exp Biomed Res. 2021; 4(1):23-37 

   
 

31 
 

far from the predicted value, as it was shown in 
the regression analysis that the PDI value was 

not fit for the model (P>0.05). Following the 

determination of consistency in optimized 
formulation values with the predicted values, 

the potential of this optimal SLN formulation 

was investigated in terms of the gene delivery 

system requirements. 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

RSM helps in the prediction of the theoretical 
optimum conditions for desired responses 

[20,21,32]. Mathematically offered formulation 

components were experimentally obtained.  
Optimal desired formulation component ratios 

and, predicted and actual experimental values 

were shown in Table 4. The obtained data 

successfully   predicts  the  responses in parallel  
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Figure 3. 3D surface response plots and contour plots showing the interference of the variables on 

zeta potential. 

          Table 4. Observed and predicted responses of the optimal formulation. 

 

C-HD5-
SLN-Opt 

Optimized variables Actual and predicted responses 

A  B C Y1 Y2 Y3 

Predicted 
Values 

% 4.45 

 

% 28.3 0.88 (1:1.83 
w/w) 

48.13 0.279 35.01 

Actual 
Values 

51.37 ±0,2843 0.209 ±0.005 35.1 ±5.09 
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significance with P values. The particle size and 
zeta potential values of this formulation, coded 

as C-HD5-Opt-SLN, are very close to the 

predicted value. The PDI value was relatively 
far from the predicted value, as it was shown in 

the regression analysis that the PDI value was 

not fit for the model (P>0.05). Following the 

determination of consistency in optimized 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

formulation values with the predicted values, 

the potential of this optimal SLN formulation 
was investigated in terms of the gene delivery 

system requirements. 

Cationic SLNs developed as gene delivery 

systems form complexes with plasmid DNA via 
electrostatic interactions. However, the ratio of 

this complex should be determined to find 

optimal C-HD5-SLN-Opt: pcDNA3-EGFP 
ratio.  For this, electrophoretic mobility assays 

were performed for the pcDNA3-EGFP 

plasmid. Samples were prepared by forming 

complexes with increasing amounts of C-HD5- 
SLN-Opt, against a fixed amount of pcDNA3-

EGFP (100 ng) with vigorous shaking at room 

temperature. When the agarose gel 
electrophoresis images were examined, it was 

observed that the electrophoretic mobility 

completely stopped at the ratio of 1:1 (v/v) as 
seen in the fourth well. (Figure 4a). The same 

ratios investigated for the SDS-induced release 

study and at all ratios, SLNs were released the 
pcDNA3-EGFP for the total concentration of 

1% SDS (w/v) solution (Figure 4b). In Figure 

4c, all complex ratios performed in 

electrophoretic mobility assay were prepared 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

freshly and then treated with DNase I (0.4 IU 

DNase I/1 μg pDNA) enzyme to determine the 
protection capacity of the formulation [27,35]. 

After incubation at 37°C for 30 minutes, SDS-

induced release of pcDNA3-EGFP was 

performed on both samples and further 
subjected by agarose gel electrophoresis to 

compare the condition of the released plasmid. 

Naked pcDNA3-EGFP was treated with the 
same amount of DNase I as control of enzyme 

activity (Lane C). As shown in Figure 2c, the 

best protection was provided in starting 1:1 

(v/v) ratio, which is seen in lane 4 and 
determined as optimal according to the 

electrophoretic mobility assay. 

Next, the physicochemical properties of the 
complex (C-HD5-SLN-Opt: pcDNA3-EGFP, 

1:1, v/v) were characterized. Particle size was 

Figure 4 (a-c). Gel retardation, SDS-induced release and DNase I protection study agarose gel 

images. a) Complex formation ratios of C-HD5-SLN-Opt: pcDNA3-EGFP, b) SDS-induced release 

of C-HD5-SLN-Opt: pcDNA3-EGFP complexes, c) Enzymatic degradation of C-HD5-SLN-Opt: 
pcDNA3-EGFP. Lanes from left 1:1kb DNA ladder as molecular weight marker, 2: naked plasmid 

DNA (100ng/well), 3-7: C-HD5-SLN-Opt: pcDNA3-EGFP complexes (respectively 0.2:1, 0,5:1, 1:1, 

2:1, 3:1, v/v). C: Naked pDNA degraded with DNase I enzyme as a control. 
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again found nanosized and below 80 nm. This 
size range is adequate for traverse into the cells 

[36]. Moreover, the charge of the system 

remained cationic. This is a factor that increases 
the entry of particles and genetic material into 

the cell by electrostatic interaction with the 

negatively charged cell membrane (Table 5). 

One of the precursors of an optimal and 
compact complex formation ratio is the PDI 

value. The PDI values below 0.4 indicate that 

the nanoparticle system is considered as 

monodispersed for drug delivery and PDI 
values over 0.7 indicate that the nanoparticle 

system has a broad size distribution for being a 

drug delivery system [23,37]. Another 
important parameter for the characterization of 

nanoparticles is the particle size distribution 

plot. For both C-HD5-SLN-Opt and C-HD5-

SLN-Opt: pcDNA3-EGFP (1:1, v/v) complex, 
a single peak was observed (Figure 5). If the 

structure of the complex was not adequately  

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

compact, more than one peaks would have been 
observed representing the excessive amount of 

pcDNA3-EGFP or bare C-HD5-SLN-Opt. 

Increasing the amount of C-HD5-SLN-Opt and 
C-HD5-SLN-Opt: pcDNA3-EGFP (1:1, v/v) 

complex was evaluated for cytotoxicity test 

(Figure 6).  In cytotoxicity studies, C-HD5-

SLN-Opt and C-HD5-SLN-Opt: pcDNA3-
EGFP (1:1, v/v) complex containing an 

equivalent amount of nanoparticle were tested 

in L929 cells. Cytotoxicity profiles are parallel 

to each other for the nanoparticle and the 
complex. Although there is dose-dependent 

cytotoxicity in both cell lines, the cell viability 

for the required amounts for transfection 
studies has not fallen below 70%. Delgado et al. 

used 2.5 µg / mL plasmid DNA for transfection. 

This corresponds to the use of the C-HD5-SLN-

Opt: pcDNA3-EGFP complex of less than 3 µL 
sample volume used in the cytotoxicity study 

[38]. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

       Table 5. Physicochemical characterization of optimal complex. 
 

Characterization of Complex 
Particle Size 
(nm) ±S.D. 

PDI  
± S.D. 

Zeta Potential 
(mV) ±S.D. 

C-HD5-SLN-Opt: pcDNA3-EGFP  (1:1, v:v) 73.76  ± 0.093 0.253 ±0.007 30.1 ± 1.48 

 

 
Figure 5. Size distribution plot of C-HD5-SLN-Opt and C-HD5-SLN-Opt: pcDNA3-EGFP, (1:1, 

v/v) complex. n=3.  
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The physicochemical stability of the developed 
C-HD5-SLN-Opt vector system was also 
evaluated. For this purpose, C-HD5-SLN-Opt 
were stored at 4 °C and particle size was 
measured at days 0, 7, 14, 30, and 60 (Figure 7). 
No significant increase was observed in particle 
size until day 21 (p>0.05). PDI value did not 
change significantly during the duration of 
stability monitoring.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Representative SEM photographs shows that of 
C-HD5-SLN-Opt and C-HD5-SLN-Opt: 
pcDNA3-EGFP, (1:1, v/v) complex are in the 
global structure and their size is correlated with 
the DLS measurement (Figure 8). For the 
advanced characterization of C-HD5-SLN-Opt 
and C-HD5-SLN-Opt: pcDNA3-EGFP, (1:1, 
v/v) complex statistical evaluations can be 
enriched with various methods such as 
differential scanning calorimetry (DSC) 
analysis, permeability studies, and 
pharmacokinetic studies [19]. 
 
 
 
 
 
 
 
 
 

 
 
 
Conclusion 
The cationic solid lipid nanoparticles were 
successfully prepared using factorial design.  
For this purpose, Box Behnken design was used 
to optimize and analyze the formulation 
parameters. Response optimization was 
performed via software to find out the optimum 
conditions for desired SLN formulation. 
Optimum solid lipid nanoparticle formulation 
was investigated in terms of its protection 
potential against nucleases, cytotoxicity profile, 
and storage stability. In this regard, the obtained 
C-HD5-SLN-Opt coded solid lipid nanoparticle 
formulation provides a good basis as a gene 
delivery system. We showed that Box-Behnken 
design is a useful model to reduce labor force 
and cost especially for compounds with low 
quantities and high prices. With this method, it 

Figure 6.  Viability percentages of L929 cells 
treated with increasing doses of C-HD5-SLN-
Opt and equivalent SLN doses of C-HD5-
SLN-Opt: pcDNA3-EGFP, (1:1, v/v) complex. 

Figure 7.   The storage stability of the developed 
C-HD5-SLN-Opt delivery system over 60 days at 
4 °C. Left Y axis represents the particle size and 
right Y axis represents the PDI of C-HD5-SLN-
Opt. ** represent P<0.01, ns: not significant, n=3. 

 

Figure 8. SEM images of (a) C-HD5-SLN-Opt 
and (b) C-HD5-SLN-Opt: pcDNA3-EGFP, 
(1:1, v/v) complex. 
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is possible to produce solid lipid nanoparticles 
with the desired feature by differing the 

variables and responses. Moreover, transfection 

efficiency can also be analyzed and 
incorporated into the Box-Behnken Design as a 

dependent variable and its efficiency can be 

optimized in the further studies. 
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